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VI—On a System of Functional Dynamics and Optics
By W. H. Wartson, McGill University

(CGommunicated by J. S. Foster, F.R.S.—Received 30 March, 1936)

With a view to developing a transformation theory of electromagnetism, in a

p
A
A\

A A

__J h former paper,* the writer has outlined a theory of the motion of lines. The pro-
< - cedure adopted was to regard MAXWELL’s equations (by which the space and time
E — derivates of the field components are connected) as the analogue of the system of
~ = equations :

= Q aﬁ”::——zﬂ—l—, %zgﬁ,etc., N € ))
T 0O ot ox oy ox

= uw

by which are connected the derivates of the momentum p,, p,, p., and energy H of
a particle specified at each point (x, y, z, ¢) of space-time by means of a given solution
of the corresponding HamiLTon-JacoBr equation. Thus a particular e.m. field for
which E and H are specified at each point of space and time is to be regarded as
belonging to a system of fields defined by the form of a function of the field components
and of x, », z, ¢, analogous to the Hamiltonian function in dynamics. This is
equivalent to representing the field by means of a system of motions of a line, and is
possible because of the form of Maxwell’s equations for space in the absence of
matter, just as it is possible to represent by means of a system of motions of a particle
any vector field whose curl vanishes everywhere as in (1). However, it is not on
account of the possible physical interest of the motion of lines per se that it is of value
to study them, but because the mathematical scheme, which systematically deals
with the dynamics of lines and with the corresponding extension of optics, appears to
have the proper generality to embrace a transformation theory of electromagnetism,
and thereby open the way for introducing the electronic charge as a modulus of
discontinuity in the theory. '

In the motion of a particle its coordinates depend on one independent variable,
which is the time in Newtonian dynamics, whereas in the motions which we are to
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< consider the coordinates x;, x5, X3, x4 (%, = ict) of a point of the line in 4-dimensional
— : orap :

space are now taken to be functions of two independent variables « and ». The
oln p . e tunctons ot two 1ncel ) ;
= purpose of this communication is to investigate in greater detail than in the paper

= . . . . . . .

QO referred to the kinematics and dynamics of moving lines (or circuits) and to develop
= O the optics of functional waves in the hope that physical form may ultimately be
== substituted for mathematical formalism.

* ¢ Trans. Roy. Soc. Can.,” vol. 28, Sect. III, pp. 1-27 (1934), referred to as I.

VOL. CCXXXVI.—A 763  (Price 4s. 64.) Y [Published 21 January, 1937

PHILOSOPHICAL
TRANSACTIONS
OF

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. IINORY
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A

a
)\
LU

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

yA \
V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

156 W. H. WATSON

This paper is divided into five sections, in the first of which kinematical aspects of
the subject are discussed in some detail. In § 2 some additions are made to the
matter on dynamics contained in I (§ 4), and in § 3 the corresponding optical system
is considered. This latter study raises questions which lead to the reconsideration of
dynamics ; in § 4 an attempt is made to construct a system in which the dynamical
variables are taken to be functionals* not necessarily connected by linear relations
as they are in § 2. The present treatment of these matters cannot be regarded as
other than elementary, and even on this level is certainly far from complete. The
mathematical structure which is common to the theory of optics and the transforma-
tion theory of dynamics appears in essence as the extension of PFAFF’s problem, and
is not simple. When one reflects on the extensive literature on PFAFF’s problem and
on the related theories of Pfaffian systems and of contact transformations, one is
impressed by the possibility of analogous development relative to the extended
problem and of the application of this development to physics.

In § 5 attention is once again directed to the possible connexion of functional
dynamics and optics with electricity, and to the method of representing electromag-
netic fields used in I to suggest a proper form of transformation theory of electro-
magnetic fields. It is shown how Born’s theory of a limiting electric field may be
quite naturally associated with the invariance of the velocity of the functional waves
analogous to light, when the functional variables undergo linear transformation.
A physical explanation is offered of the independent variables « and v and it is shown
that just as quaternions are appropriate to the discussion of special relativity so
biquaternions are a suggestive means of expressing BorN’s hypothesis. It is con-
cluded that the idea of a transformation theory of electromagnetic fields may be
combined with any theory of the same type as Born’s.

1—KINEMATICS

An electromagnetic field is explored, either by the motion of charged particles
through it or by means of a secondary circuit, which for practical reasons is usually
a closed one. On account of this and because of the mathematical arguments
advanced in I, we shall deal with the motion of a closed line, and unless qualification
is made to the contrary, we shall, in dealing with moving lines, understand that they
are closed ones. When z and v are varied, in accordance with the motion, the possible
changes in x;, ¥, ¥3, ¥, must satisfy the Pfaffian system

S (x,x)de, =0  (ns=1,2,34)  where (x,x) :?% 2)

Of the equations (2) only two are independent, for

(%15 %2) (X35 %4) ~F (%2, X3) (%1, %) + (K3, %1) (K2, %4) =0, . . . (3)

* (f. VOLTERRA, “ Theory of Functionals,” pp. 163-165, where a different system is considered.
+ Especially pp. 14-15.
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ON A SYSTEM OF FUNCTIONAL DYNAMICS AND OPTICS 157

the Jacobians being proportional to the direction-cosines of the surface element at
(%1, %3, x5, x,) generated by the motion of the line. These quantities form a six-
vector and are the analogues of the components of velocity in the motion of a point;
when all of them vanish the x’s depend on one variable only, the line does not
generate a two-way manifold by its motion. This analogy between the Jacobians
and the components of the velocity of a particle deserves further examination ; it
must be based on some sort of notion of the distance between two closed lines.
(a) The distance between the centres of mass of the lines (supposed uniformly loaded)
is clearly a measure of the separation of the lines in space, and this measure can be
represented as a 4-vector. It is, however, really the distance between two points,
and the same device will serve for measuring the distance between any two loci in
hyperspace, be they linear or not. (b) For two figures in a plane, MAXWELL* intro-
duced the conception of the geometrical mean distance R defined by

logR:“Hlogrﬂdxq'ydx’dy’/”dx@.”‘dx'd’)"’

where 7, is the distance between A, a point of the part of the plane enclosed by the
boundary of the first figure, and B lying within the boundary of the second. This
idea does not admit of generalization to lines in 3- or 4-space unless we are given the
surfaces (2-dimensional manifolds) bounded by the lines in question over which we
are to make the integrations, and this, of course, means that the distance so defined
would be that between the portions of the two surfaces. On the other hand, one
could apply MAXWELL’s conception by replacing the integrals over the surfaces by
line integrals, thus writing

log R (L,L,) = H log r ds, a’sz/j ds, . I ds,.

This definition is obviously just a formal variant of (¢) which employed the
arithmetical mean distance and is not suited for our purpose. It should be noted
that both of these means give the distance as a functional. They have been
mentioned in order to emphasize that perfectly definite conceptions have been
considered for the measurement of distance between elements of space which are
not mere points. To be physically useful, our ideas must escape from the bewildering
generality of functional spaces. It is therefore desirable to go back to some form of
expression for the distance between two points which will serve as a suitable pattern
for the generalization to the case of lines. This is found, of course, in the form by
which the components of the vector distance between two points P and Q are defined
in terms of integrals along any simple curve G joining P and Q ; thus

P dx P
—_— = — = e o ‘e e « e & « 4 e 4
Xp — Xq deS ds [Q dx, (4)

* Treatise, vol. II, p. 324.

Y2
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158 W. H. WATSON

while the actual scalar distance can be put in the form
'dx/\/ (d"> ...... . (5)

the number of values taken by r being equal to the number of dimensions of the
space.

Quite analogous to these are the definitions of the components of the 6-vector A
(in 3 dimensions 3-vector) as integrals along any tubular surface S which joins the
lines L; and L,, namely, the projections of S on the six coordinate planes, e.g.,

~

A, = j Jde (8)

integrated over the portion of S bounded by L, and L,. Now if £, and %, are any
two simple surfaces bounded by L; and L, respectively, on account of the fact that
S, Z,, and X, make a closed surface, A, = (Z,),, — (2,),, is the difference of a
function of the line L, and a function of the line L,. We shall call A the 6-distance
between the lines L, and L,. Itis clearly not a measure of the separation of the lines
in the ordinary sense for if L, can be transformed into L, by a simple translation,
then each of the components of the 6-distance between L, and L, vanishes. On the
other hand, the functional which corresponds to (5), namely

(2 (%, x,) dxdx,
|A| = ﬁ————————vm e (7)

which is the area of the tube surface connecting L, and L,, does not vanish under the
same circumstances. Conversely, it is possible for |A| to vanish when none of the
components of the vector is equal to zero. The functional expressed by the double
integral (7) will depend on the surface S which is chosen to connect L, and L, just
as the integral (5) depends on the curve C chosen to connect the points P and Q.
The scalar |A| can be made unique by choosing S to be the analogue of the straight
line (or geodesic), that is, S must be a minimal surface. This connexion between
minimal surfaces and linear functionals is a very important one for our purpose. The
3-dimensional case is somewhat more simple than the 4-dimensional one, so we shall
deal with it first. Let the minimal surface S be defined by the equation

S(x23,2)=0. . .. ... ... (8)
The scalar distance between L, and L, is the functional
dxd

® =ﬁfxdﬂ’z +fy‘§dx thddy )

where f, = 9f/ox, etc., and Z2 = f.2 4 f2 4 f.2.
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ON A SYSTEM OF FUNCTIONAL DYNAMICS AND OPTICS 159

In virtue of the differential equation for minimal surfaces, namely, in the usual
notation,

(I4¢)r—2pgs+ (1 +p2)t=0, . . . .. ... (10)

the corresponding homogeneous equation to which (10) is equivalent, and which
must be satisfied by f, is

az;<> @ _92<_> 0. (11)

Consequently the necessary relation™

do > < do > < do > —0 19
s 759) T olew) Trlam) =0 12
is fulfilled, the derivates of @, by their definition, being given by
o _ f, o f, o _ f. o '(13)
d(yz) Z° d(zx) Z° d(xy) Z°° o

Now if Z = 1, f satisfies LAPLACE’s equation ; accordingly the function f and the
functional ® are then conjugate and ® is a harmonic functional.t On account of
(13) the derivates of the harmonic functional ® will satisfy in addition to (12) the

system of equations
?_<_d._‘1’ >=2<_‘1® > etc (14)
5\ 707 \a ) S

The corresponding relations in 4-dimensional space are derived as follows. The
area of S connecting L, and L, is

@:ijNndx,dx” ........ .. (15)

where

N, = (xn x:)/[z (xn xx)z]%,

any two surface coordinates # and v being used as independent variables in the
calculation of the Jacobians. The condition that S be a minimal surface is that the
symbolic differential under the double sign of integration in (15) must be a total
symbolic differential. When the equations of the minimal surface have the form

f(xla Xoy X3, x4) =0 g (xl) Xoy X3, x4) =0 (16)
and hence Y ' "
a J
N,, = 5 (oo, i) { [a (x,,x)} } ,etc, ... ... (17)

* VOLTERRA, ‘ Theory of Functionals,” p. 82.
T VoLTERRA, ““ Theory of Functionals,” p. 88.
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160 W. H. WATSON

the conditions are the four equations
| ax” + 2 N, e T aN,, — 0. () . (18)
1

The equations (18) can also be deduced from the Eulerian equations of the variation
problem by laborious transformation.

Now
r o do
Nrs‘*—‘ m L E T A I I I
so that (18) gives the relations analogous to (12) which must be fulfilled by the
functional derivates of ®.

If we write . "
then BK (%, %) { [6 (x,: x)] } """" (20
¥ = J‘kl Nede,de, . . . . . ... .. (1)

is the functional conjugate to ®, provided that

[a ((xJ:’ x” L oo (22)

(N") + () o (N") =0, (t#EnS, .. ... (23)

for the necessary relations

6

are satisfied identically. It will be noticed that ¥ is isogenic to each of the two
functions fand g. This means that we can define a whole series of related functionals,
of which

_ j FdY = Hz FNtde de, .. (24)

is typical.
When the condition (22) is satisfied, equations (23) can be regarded as imposing on

N, the restrictions

s o (25)

s OX,

and it is obvious that equations (18) and (25) are just MAXWELL’s equations in the
absence of matter, whenever the N,, are suitably correlated with the field components,
under the condition that the electric and magnetic vectors are mutually perpen-
dicular.* Equations (25) are analogous to (14). ¥, of course, vanishes when the
integration is over any portion whatever of the surface S defined by (16) and (18).

* I, p. 13.
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ON A SYSTEM OF FUNCTIONAL DYNAMICS AND OPTICS 161

Let us now return to the kinematical discussion which prompted the above con-
sideration of geometrical matters, and consider first the non-relativistic case of a line
in 3-space whose form and position depend on the time, the second independent
variable being the parameter # by means of which the points of the line are dis-
tinguished. The locus of the moving line is a tube whose equations given in para-
metric form are :

x=xwt), y=9@wt), z2=z@t. ..... (26

A particular line on this tube is given by setting up a relation between « and ¢, which,
of course, is represented by a line in the 2-dimensional space with coordinates u
and ¢.  Suppose that the lines L, and L, of xyz-space correspond respectively to the
lines A; and A, of utspace. The average velocity of the line in its motion from L,
to L,, on analogy with the velocity of a particle, is the ratio

Distance of L, from L, /Distance of A; from A,

The limiting value of this ratio as A, - A, in the neighbourhood of (u, t) yields
the analogue of instantaneous velocity, namely, the 3-vector whose components are

0 (12  ,, _0(24) w, — 0 (%.7)

*T 3 (u,0) Y0 ()’ 0 (u, 1)’
and whose magnitude |w]| is given by

|w| = |A| |B| sin. (AB), . . . ... ... (27

ot’0t’> ot ou’ ou’ ou
assumptions, A sin (A B) is the resolved part of A normal to the line at (x, , z) and

where A is the vector <8x Y 6z> and B the vector <6x » 6z> Since, under our

|IB| = g% where s denotes the length of arc of the line from some reference point to

(%, 9, 2), it is not inappropriate to refer to the Jacobians as the components of the
velocity of the line at the point (x, 3, 2).

In the 4-dimensional case, V is the 6-vector which is the vector product of two
4-vectors. We can make a reduction analogous to that given above for 3 dimensions
by introducing two variables s and o such that when x, is varied s does not change,
there being no such restriction on o, which, however, is chosen to have the dimen-
sions of interval.

V= % (x,%) = = [%.%_;‘)_) (s, G)T (rs=1,23,4),

summed over all combinations of 7 and s. Thus
e s oo
Vi = (5,0) {f[a(s,c) 2y 8s> a (rns=1,23)

=G {2 =& - (%] -[22 2]} - @
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162 W. H. WATSON
Now let /
/\%%) — <§Z> z@i) o (29)
then ‘
(V)2=——(s,c)2<%%>zsin2 (55). « o o .. (30)
On choosing v to be x, we obtain for the purpose of illustration
(V) —%‘:- g—z -a—“::sm (s51) -aif—ail sin (ssy) . . . . . (31)

which is of the same form as in the 3-dimensional case (27).

In a more direct fashion we can bring out the analogy in question by means of
functional derivation. For example, A, the yz component of the 6-distance of the
moving line from its initial configuration is given by (6) and is a function of the line A
in uv space. Its functional derivate with respect to the uv plane is

dA,. _ 9 (»2)
T =5 (32)

Thus functional differentiation with respect to the pair of independent variables
u and v in the motion of a line is analogous to ordinary differentiation with respect to
the time in the motion of a particle. But the analogy is a restricted one, for so long
as A, is a linear functional, the derivate (32) is a function of the point (x, », z) only,
and there is no place for the second operation of differentiation, whereas there is in
passing from the velocity to the acceleration of a particle.

In order to obtain acceleration by means of the operator d/d (uv), we have to create a
functional from the components V,, = (x,, &,) of the velocity at a point of the line.
This can be done in the following way to which the method used in I* is equivalent.
Consider a system of particle orbits of given energy in a conservative field of force.
If 4 is the potential energy per unit mass of particle, the rth component of acceleration

0

V), = — — = = Ug

0x, s OX,

since § 2 0,2 + ¢ = a constant. This suggests that we can set up a Hamiltonian

$
system of motions of a line, and define the acceleration as the vector whose 4 com-
ponents are given by

BV,,
Bx Vi

If the form X V,, dx, dx, is a total symbolic differential,

w n . aVis —_
ax + 0x; ox, 0,
* Pp. 17-18.
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therefore,
N oV, , oV,
ar"_§<"a_x': +—a—xs-> (%5 %,)
— 2?8 Ow®) L (3
s 8(u,v)
That is
_d
a,—m”%dedx,. (3

The functional appearing in (34) might be called the functional velocity of the
line, to distinguish it from velocity at a point, which is properly speaking an intensity
and not a property of the whole line. In his discussion of the exploration of the
electromagnetic field by means of a secondary circuit, MAXwEeLL* introduced the
corresponding distinction between the electromotive force in the whole circuit and
the electromotive intensity at a point of the circuit.

We can also show the formal relation between the acceleration at a point of a
moving line and the acceleration of a particle by another method. After carrying
out the differentiations, we obtain,

a, = z ((xra x.v)a x:)

_ G _gp % | % | (0G _OF\0x  (OF _0F\dx,
- GW 2F8u80+ E ot T <8u 80> ou +<81} 8u> ov’ (35)
where, in the usual notation of differential geometry,
o [ox\ _ 0%, % ooz
Ber(@), Fergge o= @) - o

From (35), in the 3-dimensional case, if
H? = (5,2 + (5% + (5)° (37)
(9, 2) = HX, etc.
_ 2 (g _pdw | o (pox_ pox
a”—£<G51—¢ F80>+80<E80 Fau)
_ 2 % _ 7\, 2 %2 _ 79 ]
ou [H <Y ov Z 80)] + ov [H <Y ou Z 6u>
=H[—(Y,2) + (Z,9)]+Y (t, H) — Z (y H)
=KHX4+YZH -Z(p,H), .. ... ... ... (38

on making use of the well-known relations of differential geometry,t where K, is
the mean curvature of the surface. When H is a constant during the motion and

and

* ¢ Treatise,” vol. II, p. 242.
T See, for example, EisenmarT, ‘‘ Differential Geometry,” p. 118, equation (13), and p. 123,
equation (33).

VOL. CCXXXVIL—A z
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164 W. H. WATSON

when the acceleration also vanishes, then K, must be equal to zero, that is, the line
describes a minimal surface in its motion. Under the same condition of constant
H, but with non-vanishing acceleration, (38) is quite analogous to the expression
for the acceleration of a particle moving with constant speed in a circular path.
Clearly one could find other points of analogy which are associated with particular
choices of the parameters « and v. For instance, ifwehad E=G=1and F=0

82x
& T ur 81)2 ?

and the Laplacian operator replaces (d/dt)? when we pass from the particle to the line.
The most important result for us is the emergence of the motion of a line on a
minimal surface as the analogue of the unaccelerated rectilinear motion of a particle.

2—DyNaMICS

When we pass now from kinematics to dynamics, it is necessary to introduce the
quantity corresponding to momentum in the dynamics of a partlcle, and we define
as the momentum of the line at one of its points

Po=«x(x,%), . . . . .. . ... .. (39

where « has certain physical dimensions not yet specified.
It was indicated in I* that if * force ** is defined as the vector whose 7th component
is
EJZ(P,J,xx),.............. (40)

and if this is derivable from the potential function V (xy, x5, &3, %,), then the equations
of motion (due to VOLTERRA) are

oH
aprs

(%, %) =

oH
E(p,,,x5)=——é—x—, N 30
where

1
H (st: D315 P12 Pras Poas Paas X1, Xay X3, x4) = 9. i[’nz +V

is the Hamiltonian function and p,, is the canonical momentum conjugate to or
associated with x,x,.
These equations of motion are connected with the variational problem

8”[H—V]’de=O, N )

when H is constant, dS being the element of area of the tube on which the line moves.
In the case of free motion, that is, when the potential function V is constant, then,

* P.18.
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on account of (38) (re-written for 4 dimensions), the line describes a minimal surface,
provided that «, like the mass of the corresponding particle, is constant. Given the
initial position of the line, and the initial velocity at each point of this line being
specified, one can find the tube trajectory of the moving line by the use of ScEwARZ’s
method, for, when the velocity is specified, one can at once deduce the direction
cosines of the required minimal surface at each point of the given initial line, and
these data are sufficient to determine the minimal surface uniquely.* These con-
siderations are of importance as they bear also on the analogue of FERMAT’s Principle
which must be the basis of the ray optics associated with the system of dynamics
with which we are dealing.

It is desirable to investigate the physical significance of the idea of force introduced
in equation (40). For this purpose it is convenient to consider the line analogue of
the motion of an electrified particle of charge ¢ in a given electromagnetic field. It
will be recalled that it is necessary to transform the Hamiltonian function for the
non-electrical case by substituting for each canonical momentum p,, the sum of p,,
and the corresponding component of the potential-momentum 4-vector. This
vector is the generalization of potential energy in accordance with special relativity
and is equal to ¢ times the electromagnetic 4-vector potential. Let us consider,
therefore, in the case of the line motion, the Hamiltonian function

1

=12 34
= X 2 r, S s “y Iy >
H 2K s (p kgn) < r ?5 s ’ (43)
where &, = — &, £, are given functions of x,, x,, x5, ¥4, and A is a given constant.

The potential V has been put equal to zero, for in what follows it plays no essential
part.
From the equations of motion (41), it is evident that

pe— N =P, =k (x,%) . . . . . ... (44
oH
Z (Pm x:) = Z (ﬁm x:) — )\ Z (Ens) x:) - éx— - 7\ E (Em x) A (45)
Now '
Z (B k) =22 s EE”’ x)) (%, %) summed over all combinations of ¢, &
s s ik Xiy Xp
o (% f’_§_> .
o ,% <8x,- 0 (5 %),
and
oH G oH 9g . 0,
ox, A Z; op, 0x, A2 0x, (5 ).
Hence
B (Pon) =23 () (B B Boe) L g

* DARBOUX, ““ Théorie Générale des Surfaces,”” Bk. III, chap. viii.

z 2
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166 W. H. WATSON

Now, provided that the £, are not the components of the curl of a vector, the co-
efficients of (x;, x,) in equation (46) form the vector whose 4 components are

Ck:__ag.:is __a_E.l_x_{__aéf:EaEks

8x, ax, ax,- $ axs ’

k # i, r, s, on raising the indices in the usual way, and writing V* for (x;, x,).

Thus
EP,x)=azCVF ... (47)
s k

which are quite analogous to the equations of motion of a particle in a given electro-
magnetic field ; in (47) the ¢* fill the role played by the field components for the
particle. Now suppose that the £* are the components of an electromagnetic field,
the indices being assigned in the usual way, then ¢* are the components of the charge
and current density vector. On account of (47) and (44),

A
? (Prs> x:) == ;

E(pch—agkeyH, ... .. .. (48
k
and since

Z Erkck:Fr

k

is the rth component of the mechanical force per unit volume of the field &*, we see
that a mechanical interpretation can be given to the concept ‘ force  introduced in
(40). Let p,, be assigned values throughout the 4-space of the x’s by selecting one
solution of the extended HaMiLTON-JACOBI equation* and equating p,, to the corre-

sponding derivative , of the functional ® which is the solution in question.

do
d (%, %)
On account of the necessary relations between the functional derivatives (¢f. equations
(18) and (19)), the p” are the components of a field having zero charge and current,

so that »
b (P rsy x:) =

x>

s phrk — N 49
- N )

where f, is the rth component of the force per unit volume of the electromagnetic
field whose components are P¥/a associated with the particular solution ® of the
extended HAMILTON-JACOBI equation. Further, the Hamiltonian function similarly
derived from ® is A%/« times the action density in this field.

(It is perhaps not without interest to note some of the possible sets of physical
dimensions that may be assigned to A and x. Suppose that the product u is of the
dimensions [L T], then making use of equations (39) and (49) we have,

[2*] =[] [L]* [M]™*  or  [2] = [«] [L]* [VI[Q]™

* See I, p. 22.
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where [V] and [Q] denote velocity and electric charge respectively. Hence, if

(i) [<] = [M] [L], [A] = [Q][VI™
(i) [«] = [Q] [L], | [»] = [L] [V]
(i) [«] = [QI[L]7% [»] = [V]

(iv) [«] = [Q] [L]"* [V]™* (electrokinetic momentum), [A] = [L].)

So far we have considered the motion of one line only. In a system of two lines
it is necessary to set up some physical principle specifying how they act on each other.
Probably the simplest assumption that we can make is that the sum of the forces
defined by (40) must be zero, for all possible pairs of values of » and ». In an

obvious notation this is
S (Px) +2(Quy)=0. . . . . .. ... (50

On performing double integration with respect to # and » between two lines A;, A, of
uv-space we obtain the analogue of the conservation of momentum, namely,

ﬂ?dP,,dx,+H2“.dQ”aﬁz,:0. N 1))

The application of this result is straightforward if the lines do not act on each other
except at the discontinuity where a collision takes place. In the general case, how-
ever, the interaction between the lines would be given by means of a potential
functional (instead of function) (see § 4), symmetrical in the two lines. A simple case
of such a functional is the coefficient of mutual induction between two circuits.
We shall not pursue the matter any further here.

In what follows reference is made to the transformation structure of this dynamical
scheme, discussed in I. The required development of ideas is made in connexion
with the analogue of optics, now to be considered.

3—OrTICS

Associated with the system of dynamics discussed in § 2 there is a geometrical or
ray optics in which the rays are 2-dimensional manifolds. The connexion between
the optical and dynamical systems is set up by HamiLton’s Principle for lines (42),
which becomes the optical law analogous to FERMAT’s Principle, namely*

SHWZS:O. 52

For a homogeneous medium, the rays are therefore minimal surfaces, this principle
is analogous to that of the rectilinear propagation of light. From (52) the laws of
reflexion and refraction can be deduced. In 3-dimensional space, for instance, let

* In this connexion the status of FErRMAT’S Principle in optics should be kept in mind. See
CArtaAN, “ Invariants Intégraux,” chap. xix.
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aray (surface) pass through the line L,, be reflected at the plane P in the line L,, and
pass through the line L,. If S, is the area of the minimal surface joining L; to L,
and S, that joining L, and L, and if d/ds denotes functional differentiation with
respect to the plane P, then (52) requires that

as, | dS,
-%-—f—%—_,............ (53)
for each point of L,. Evidently by taking the ordinary image L,” of L; with respect
to P, L, can be found as the intersection of the plane P with the minimal surface
which joins L,” and L,.

The corresponding law of refraction is

B Lm0,
‘where pq, Sy, ¢s, S, have their obvious meanings.

One can imagine a system of geometrical optics based on these principles and
developed to an extent limited only by mathematical difficulties ; but although one
can form a clear picture of the paths of the rays (in 3-space at least), one is not so
happily placed with regard to the possible nature of the disturbance which is to be
propagated over them, or of the physical processes by which the propagation might
take place. The satisfactory answering of these two questions involves first the con-
struction of a system of optics analogous to ordinary physical or wave optics, and
then, once this is understood, the examination of experience to find instances to
which the theory may be applied. At present we are concerned with the former
task only, and, in the manner converse to that which aided HAamILTON to form the
transformation theory of dynamics on the basis of his optical knowledge, we shall
endeavour to arrive at the required optical ideas starting from the corresponding
transformation theory of the dynamics of lines. Let us recall that in the natural
extension of the HamiLTON-JAcoBI theory * it is necessary to introduce a functional
in place of the characteristic function of classical theory. Accordingly, the quantity
specifying the corresponding optical disturbance is necessarily a functional : whether
it is to be scalar or vector we are not yet in a position to decide. We shall confine
ourselves to the question of phase, which is closely related to the dynamical trans-
formation theory, and, in order to retain the possibility of geometrical aids to
thought, we shall restrict the study to 3 dimensions for the present.

In ordinary optics, FERMAT’s Principle is equivalent physically to the agreement
in phase of disturbances arriving at the same time at an image focus from all possible
directions lying within a certain cone. With this for a guide, we see from the
minimum principle (52) that the phase of the disturbance at L, differs from that at
L, on the same ray by an amount equal to the area of the ray surface bounded by L,
and L,, provided that the  epoch > at which the disturbance at L, is considered, is

* Due to VoLTERRA and discussed in I, p. 16 and pp. 19-22.


http://rsta.royalsocietypublishing.org/

j A Y

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

' \

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ON A SYSTEM OF FUNCTIONAL DYNAMICS AND OPTICS 169

the same as that at L,. Since there are now two independent variables, *“ epoch ’
refers to a line in the wv-plane (a particular equation connecting # and v) and the
disturbance is a function of a line L in xyz-space and a function of a line A in uv-space,
which may be written

Fx(s),0(s), 2(s5); u(w), v (w)].

What corresponds to time interval in ordinary optics is the * distance ** between the
two closed lines »; and 2, in uv-space. Hence the phase difference for the lines
L,, L, on the same ray at the epochs A; and A, respectively is the functional

@::a”dsmbjpmah . (55)

The first integral of (55) is over the minimal surface joining L; and L,, provided
that the surface in question is a ray of the optical disturbance, and the second integral
is the distance between A; and A,. The constants ¢ and b roughly correspond to
wave-number and frequency respectively. At each point of the ray and each point
of uv-space the ““ wave ”” will have a certain velocity specified in the same way that
the velocity of a line at one of its points was specified in § 1. This arises as follows.
Having in mind the propagation of ordinary visible waves, let us imagine some
feature of the disturbance in the functional wave. Corresponding to a particular
epoch 1y, this feature occupies a certain set of lines (L;) of xyz-space and for another
epoch 2,, it lies at the set (L,). On a particular optical ray of the system there is
one representative of (L;) and one of (L,). The propagation of the feature of the
disturbance along a ray is therefore equivalent to the motion of a line along the ray
from L, to L,, and the velocity of propagation is to be calculated in the following
way. For example, the ( yz) component of velocity at (¥, », 2 ; u, v) is

b do | do
s =iwliga (56)
d(yz)

for when dydz and dudv are in the above ratio, then ® is unaffected by the simul-
taneous infinitesimal deformation of L and A.

Continuing to deal with lines L on the same ray, suppose that the phase difference
is measured from the line L,. For a given epoch, the lines L. which have the same
phase satisfy the equation

UdS:constant, R 7))

integration being between L, and L on the minimal surface. Now since dS can
be put in the form dy;dy,, it is readily seen that the solution of (57) can be reduced to
the solution of the problem .

rww=A ...... C. ... (58
1] . -
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where 7 is a function of 6 to be determined and A is a constant. 7 (6) must be

Vémwy+uwnmmo
a solution provided that r; (0) and 7, (0) fulfil the condition

periodic, and if r; (6) and 7, (0) are solutions of (58), then

2w
jOHWMMMdGZQ L (59)
i.e, 1, (0), ry (0) are orthogonal functions. With suitable restrictions on the
functions r, (0), one can regard (58) as the equation of a hyper-sphere in the functional
space in which the 7’s are the coordinate vectors. ’

Turning from this very general problem, consider the lines satisfying (57) which
pass through a particular point (xo, %, 20) of the ray. Since, as we have seen, the
wave velocity at a point is a unique vector (56), and as in the neighbourhood of
(%0, Y0, 20) the set («) of lines L of equal phase on the ray determines a plane, namely,
the tangent-plane to the ray at (%, %, Zo), it is natural to expect a connexion
between the velocity vector and this plane. The vector is found to be normal to
the plane. Each line L of the set « determines at (xy, %, 2) a plane element
containing the normal to the ray at that point. There are o' such plane elements
through (%, yo, 2o) all intersecting in the normal. Let f (x, », 2) =0 and g
(x, », 2) = 0 be any two surfaces which at (o, »,, 2o) each contain one of the plane
elements. The direction cosines of their intersection at (xy, %, 2y) are proportional
respectively to

o (f,8) 2 (/, 8) o (/8
0(»2)" (%) 2(x))

Thus, although the tangent plane of a single surface such as fis not fixed by the wave
velocity vector, yet the direction of the intersection of any pair of the set of surfaces
to which fand g belong is determined. The set of surfaces f, g, etc., will correspond
to a single wave surface in ordinary optics provided that they are loci of equal phase.
Whereas in ordinary optics the normal to the wave surface at any point gives the
direction of the ray (provided that the wave surface is a surface of equal amplitude
and equal phase), in the system of functional optics which we are now considering,
the normal to the ray surface at a particular point determines an element of the
intersection of an infinite set of surfaces of equal phase. To prove this statement we
require to specify how the phase difference for any two lines whatever (not merely
on the same ray) is to be calculated. Let X, Y, Z be a solenoidal vector of unit
length, whose value is given at each point (x, », z). We have

oX | oY
R

so that X, Y, Z can be considered as the direction cosines of the normal to a minimal
surface. The specification of X, Y, Z throughout space is equivalent to giving a
family of minimal surfaces, which we shall think of as a family of rays in the optical

X2 4 Ye 472 =1, +%=Q.....mm
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problem. In prescribing (X, Y, Z), which is, in fact, the wave velocity vector,
throughout xyz-space and independent of the variables «, v, we have in mind the
analogue of a steady progressive wave-motion.* The phase difference between L,
and L, at the same epoch is the functional

o=([Xddz t Ydzde +-Zdxdy, . ... ... (61)
. 'y N

integrated between L, and L,. A locus of equal phase is therefore. to be found by
solving the extended Pfaff’s problemt

do = Xdydz + Ydzdx + Zdedy=0. . . ... (62

If f(x, 9, 2) = 0 is an integral manifold of (62) then f must satisfy the differential
equation

of f | 7of _ _
XgptYg+238 =0, @ogr=0, ... .. (63)

which, of course, shows that the surface fis everywhere orthogonal to the family of
minimal surfaces which are the rays of the optical problem. The general solution
of (63) involves an arbitrary function. If y,, », are characteristic variables of the
symbolic form d®, and therefore integrals of the characteristic system entering the
solution of (63) by LAGRANGE’S method,

do = d)’l 4)’2;

and by the theory of symbolic differential forms, (62) requires y; = ¢ (»,) where ¢

is an arbitrary functional symbol ; this is the general solution of (63). - The infinity

of solutions passing through a given point of space has the property that any two

solutions determine a direction in space whose direction cosines are proportional to
0 (y1,02) 0 (91,92) 0 (915 29)

: 0 (227 9 (2, %) ° 0 (x,0)
For, if we write

S22 =1 — ¢ (92) =0,  g(%,9,2) =y — ¢ () =0,

aUML:@i_i$BOmhL
(32 \dy, dyy) 9(2,2)

we have

But

8 () _ d° _x 64
2(9,2) d(y2) ’ | (4

so the unique direction at each point (¥, », z) marked out by the family of surfaces
there turns out to be (X, Y, Z) the direction normal to the ray surface at (x, y, z).

* (f. ScHRODINGER, ‘ Ann. Physik,” vol. 79, §1 (1926).
1 Goursart, “ Le Probléme de Pfaff,” p. 111, et seq.

VOL. COXXXVI—A 2 A
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172 W. H. WATSON

From the mathematical point of view, the propagation of the wave is the trans-
formation of the point (x, y, z), together with the vector (X, Y, Z) into the point
(%, ', 2'), together with its corresponding vector (X', Y’, Z’). These transforma-
tions are related to the extended PFAFF’s problem in much the same way that contact
transformations are related to PFAFF’s problem,* and, for a reason which will soon
appear, might be called * functional contact transformations”. It will be recalled
that in the transformation theory of ordinary optics, for a system of media through
which passes a system of rays, HamiLTON’S characteristic function determines the
behaviour of the rays, and that contact transformations are the mathematical
expression of Huycens’s Principle. The time taken by light to travel through the
medium from an arbitrary point (x, 3, 2) to another arbitrary point (x’, 3", 2’) depends
only on the six quantities (x, y, 2, ¥', ), 2’) ; and if it is represented by V (x, », 2,
%', ', z'), this is HAMILTON’s characteristic function for the medium in question. In
functional optics imagine that the disturbance has reached the arbitrary line L at
the epoch A and will reach another arbitrary line L’ at the epoch A’ : we are going
to require that the ““ distance >’ between the lines 2 and A" in the uv-plane is a function
of the lines L. and L’ only, and shall call this the characteristic functional for the
system under consideration. Expressed formally,

W (L, L) = W [x (5),5 (5), 2 (), ¥ (6,5 (0,2 (] = [[duds, . (65)

integration being between » and 2’. Suppose that the line L is varied on the locus
of equal phase ¢ corresponding to the epoch .  When 1’ is given, (65) defines a set
of loci, one member of the set for each L, and this set corresponds to a family of
secondary waves from a wave-front in ordinary optics. The new locus of equal
phase for the epoch 2’, which we shall call ¢, must be in some sense the envelope of
the set of loci defined by (65) when L is varied ons. We have, therefore, to find the
geometrical meaning of contact of two loci which are defined by means of functional

relations of the type,
G (L) = constant, and J (L) = constant.

The element of the ‘‘ tangent plane ” to G at the point (¥, y, 2) is given by

9G_ pdy + -9 grde + -9 axay=0. . .. .. (66)

d (yz) d (2x) d (%)

We have seen that the solution of this equation (66) is a system of surfaces which at
(x, 9, z) have a common element of intersection whose direction cosines are propor-

tional respectively to
dG dG dG

d(yz)’ d (zx)’ d (xy) "

* (¢f. CampBELL, “ Theory of Continuous Groups,” chaps. xiv—xix. We cannot, however, refer
to them as ‘ extended > contact transformations as this term has already another meaning.


http://rsta.royalsocietypublishing.org/

A A

A\

’—‘]xt
NI
olm
~ =
oY)
o)
=w

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

AL A

N
O H
e
= O
= O
= w

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ON A SYSTEM OF FUNCTIONAL DYNAMICS AND OPTICS 173

The loci G and J will be said to touch whenever the element of intersection at (x, 9, 2)
belonging to G coincides with that belonging to J. This involves that the functional
derivates of G and J with respect to the coordinate planes at (x, y, z) are proportional
to each other. We now return to consider ¢’ as the envelope (in the sense consistent
with the above conception of contact) of the loci defined by (65) when L lies on s.
This requires that, in the first place, if L is deformed in any way on ¢, L being fixed,
W (L, L) will be unaltered. Hence if (dx, dy, dz) and (3, 8y, 5z) be two independent
linear elements on o at (¥, 9, 2)*

dW dW dW )
dySz — 8ydz) + dzdx — 3zdx) + - (dx8y — 3xdy) = 0,
709 @ 0de) + T ( )+ Ty Y D)
or in symbolic differential notation, L. (67)
dW dW
——dydz + ———dzdx + ——dxdy =0
1% 7 T Y=

But since any pair of linear elements of ¢ at (x, 9, z) fulfil the condition
Xdydz +Ydzdx +Zdedy=0 . . . . . . .. (68)

1 dW _ 1 dW _ 1 dW
Xd(yz2) Yd(zx) Zd(w)’

we must have

In the second place, since W (L, L’) is unaltered when L’ is deformed arbitrarily on
s’, L being fixed, we have

dW dW
" _dy d?
TG Y % T iy (y)

for any pair of linear elements belonging to ¢’ at (x, 3", 2’) and therefore satisfying

d i 4 S Ay =0, ... (70)

X'dydy +Y de d' +Z'd' dy =0. . . . . . . (71)
On account of (70) and (71)
XL AW _l___dw N )

The equations (69) and (72), together with
X2 Y2+ Z2=1land X2 +Y2+2Z22=1, . ... (73

form a system of six relations from which one can determine the six quantities
x,9, 2, X, Y, Z in terms of x, y, 2, X, Y, Z, so that once one is given the single
functional W (L, L’), one can deduce the equations of transformation. Since X, Y, Z

* Cf. VOLTERRA, ““ Theory of Functionals,” pp. 76-77.

2A2
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is the direction of the normal at (x, y, z), knowledge of the transformation equations
enables one to construct the corresponding rays of the optical problem.
The equations (67)—(72) express the principle that in this system of functional
optics is to act as the equivalent of Huycens’s Principle. If we had employed a
dW dW*
d(yz) di °
then the equations would have exactly the same form as those in ordinary optical
theory expressing that the wave-front at a particular time is the envelope of the
secondary waves from each element of the front at a previous time. The infinitesimal
transformations of the system would then be given by equations of the form for
infinitesimal contact transformations but with functional elements (symbolic
differentials) replacing ordinary differentials.
From the equations (69) and (72), we see that we can write

AW =« (Xdydz +Ydzdx+ Zdxdy) + p (X' dy'dz’ +Y'dz dx' -+ 2" dx" dy'), (74)

functional notation throughout, writing, for example, dy dz = d% and for

where « and p are factors of proportionality not yet determined. If we write

kX = — P, kY = — Q) kZ, = — R,
HX, : Pl, ‘LY/ — Q'/, HZ, — RI’
we have

dW =P dy' dz’ + Q' dz’ dx" + R’ dx’ dy — Pdydz — Qdzdx — Rdxdy. (75)

Since W is a function of two lines only, if (x’, y’, 2/, P, Q/, R’) are expressed in terms
of (x, 9, 2, P, Q, R) in conformity with an optical transformation, then the right-hand
member of (75) must be a total symbolic differential. The infinitesimal transforma-
tions of this system were discussed in I{ and found to conform to the Hamiltonian
system (41). They are given by

X' = x -+ alAu -+ a’ Av, PP=P+ pAu-+p' Ay
' =94 bAu—+ b’ Av, Q' =Q+qAu+q¢gM +, . . (76)
2=z + cAu + ¢ Av, R'"=R }rAu + r"Av

where a, b,¢c,a’, b, ¢, p, q, 1, p’, ¢’, 1" are functions of x, y, z, P, Q, R, and satisfy the

following equation system,

oK
oP "’

(rb" — 1r'b) — (gc'— q'c) = — oK , etc.,

b’ — ¢b' = P

K being a function of x, v, z, P, Q, R.
- Now consider the line L on the locus ¢ corresponding to the epoch a. If & be
deformed infinitesimally at the point (, v) in such a way that the area of the uy-plane

* See VOLTERRA, * Theory of Functionals,” p. 93.
T P. 20.
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bounded by 2 is increased by the fixed quantity [ Au Av], the corresponding trans-

formation of L in accordance with (76) and, therefore with the propagation of the

functional wave in the interval [ AuAv], will have the property now to be deduced.
Let Aju, Ajvand A,u, A,vbe a pair of lincar elements of the uv-plane such that

Al — Aguljo = [Aulo] =k . . . . . .. (77)

Each element will determine a transformation in accordanc: with (76), and if A,y

denotes
Yy —y=>bAu+ b Ay,
and A,y denotes
b " 'y — 3y =>bAu+ b Ay, etc.,
then we have
d similarl [A))3 A'Z] = Al_yAzz — Ag_)) Az = (b(}l — Cbl) /ii,
and similarly
[Az, Ax] = (ca’ — ac’) k

[Ax, Ay] = (ab' — ba') k. . . . . . . . .. (78)

These three equations determine an element of ray surface at (x, y, z) corresponding
to the given function K, or, if we view the matter from the dynamical side, the
coeflicients of % in (78) are the components v,., v,,, v,, of the velocity at (x, », z) of
a line whose dynamical trajectory is the ray in question. Now the system of possible
rays emanating from a point is geometrically equivalent to the system of possible
dynamical trajectories through that point and belonging to a particular value of the

Hamiltonian function K. Since for an isotropic and homogeneous medium (¢f. (42)

and (52)) we have
0,2 + v, + v,2 = A? (a constant),

the equation for the secondary wave from (x, 3, z) corresponding to the elapse of the

element k£ on the uv-plane is
DAy, Az =A% . . . . .. ... .. (79

This is the functional analogue of the MoNGE equation which defines the propagation
of light waves in ordinary optics.*

Up to the present we have dealt only with the phase of the functional waves and
have not undertaken the full specification of the magnitude whose variation as a
function of a line in xyz-space and of a line in uv-space constitutes the wave motion
which we have in mind. We shall call this magnitude the wave displacement in
analogy with the elastic solid theory of light, although from the point of view of
general wave theory it ought to be called the wave functional. We now require
some means of distinguishing briefly between a line regarded as a geometrical locus
only and the dynamical entity whose motion was discussed in § 2, and shall do so by
referring to the latter always as a p-line. A possible physical process which can be
imagined as taking place in the propagation of the wave is that each p-line of the

* (f. CARTAN, “ Invariants Intégraux,” p. 196.
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medium filling xyz-space is caused to move by the wave and is under the dynamical
action of neighbouring p-lines. In order that the process be a wave at all, the dis-
placement ¥ must be a periodic function of the phase W. This involves the idea of
the dependence of one functional on another by a non-linear relation and raises a
mathematical difficulty which has now to be investigated.* If we reduce the matter
to its simplest terms, we are concerned with the dependence of the functional Q on

the linear functional A = “ du dv which is a function of the line A bounding the area

by an equation of the type
Q=fA). ... .. ... ... (80

If » is deformed infinitesimally in the neighbourhood of the point (,, v;) on the line
%, the limiting value of the ratio

increment of Q 1)
increment of the area A> =~ °~ ©~ ° 7 77

is a function of the point (u,, v;) and of the line . That is, the limit in question has

no longer the property which is essential to the notation ﬁ% , for the functional

differentiation of a linear functional. If, however, we confine ourselves to consider-
ing the class of those curves r passing through (u, ;) which are solutions of the
functional equation (¢f. (57) above),

“dua’v:AU, N 7))

where A, is a constant, then the ratio (81) is independent of 2. We can therefore

write the limit of the ratio as [ dQ and, of course, its value is f* (A,).

77

This result is readily extended to the case
Q=f (B)’
B = H ¢ (u, v) du dv.

where

The derivative of Q with respect to the uv-plane at the point (u,, v,) and B = B, is

dQ ] ,
— =f"(B Uy, 0). .+ +« . - . . . . (83
| 77 b = B (0 (83)
Once the restriction on  in the calculation of the functional derivative is understood,
there is no need to use a special notation, it will therefore be given up. The deriva-
tive is a function of the line 2 and of the point (u,,v,) and, with the same understanding

* This difficulty was recognized by Born, ¢ Proc. Roy. Soc.,” A, vol. 143, pp. 410-423 (1934), and
alluded to in I, p. 25.
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as to the calculation of the derivative, it is possible to repeat the operation of
differentiation, thus obtaining in general

ey (uv) — £ (B °)s=rl.11 S (Uy0), - o e (84)

where (u,, ,) is the point of the us-plane at which the sth derivative is taken.

It is out of place to attempt to treat the subject of functional differentiation at
greater length here. The functional Q may be a function of any number (z) of
linear functionals which are all functions of the line A ; passing to the limit when 7
is increased indefinitely, one may have Q depend on a linear functional by a
functional relation ; also there is the question of partial differentiation. In all
such cases, whatever special problems arise in the definitions on account of ambiguity
of some kind or another, the general mathematical procedure must be to introduce
the restrictions required to remove ambiguity and to enable one to retain the simple
notation which resembles as closely as possible that of the differential calculus.
There is, however, a case of functional differentiation which calls for particular

attention. Suppose that Q is the linear functional H dy dz integrated over the region

of the yz-plane bounded by the line L, and that the us-plane is mapped on the yz-
plane by means of the equations

r=y W), z=z@wo) with (32 =¢@®02). .. . .(8)

Hence L corresponds to a particular line a of the ur-plane. In virtue of (85), Q,
regarded as a function of the line 2, is the functional

Q:Hqﬂ(u, o) dudo, . . . . . . ... (88)

and its derivative with respect to the uv-plane is an ordinary function, so that Q
cannot have functional derivatives of higher order. In what way must the equations
(85) and (86) be altered in order to achieve the possibility of higher order derivatives ?
It seems necessary to introduce some degree of indefiniteness into the mapping of
uv on yz. Leta be a parameter which is a function of the line 2, and let

y =29 (4, 0,a) 2=z W v,0). . . . ... .. (87)
If « is kept constant ‘

a b —_—
—é—((-g:—f)l = ¢ (u, 0, ).

Q= H ¢ (u, 0, @) du do,

then dQ _ d(yz) "
d (w)  d (uv) = ¢ o)

Write

and since « is a function of the line 2, it is possible to repeat the operation of functional
differentiation. The geometrical significance of (87) is that we are now dealing
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with a family of mappings of the uz-plane on the yz-plane. . A particular mapping
corresponds to a definite value of «, but is independent of the line A provided that 2
belongs to the class which is defined by this particular value of «. Usually we shall

have « = ” dudv integrated over the region of the uv-plane bounded by the line 2.

The possibility of the above extension of the scope of functional differentiation
throws new light on the dynamics of § 2, where we considered only the particular
case of linear relationships between the functional variables (¢f. equation (86)).
We shall now try to adopt in dynamics the complete functional notation adumbrated
in our study of functional contact transformations. Before reconsidering dynamics
briefly from this point of view in § 4, we ought to deal with possible methods of
treating some of the many physical questions that obviously suggest themselves from
ordinary optics, ¢.g., the formation of shadows which, of course, involves the diffrac-
tion and interference of waves. These matters, however, will be treated in a
subsequent paper.

4—RECONSIDERATION OF DYNAMICS

The conception of a system of dynamics in which the dynamical variables are
functionals is by no means new. Although he did not use any of the terms of the
modern functional calculus, MAXwWELL,* in his dynamical theory of electric circuits,
used as variables quantities which are functions of the whole circuit, and in what
follows the reader ought to have MAXWELL’S writings in mind.

Let u and » be taken as independent variables, and let « denote the area of the
uv-plane bounded by the line ». Following the procedure adopted in equation (87),
let us propose

x=x (u,0,a) v =29 (4,0, a) 2=z v,a). . . . . (88)

This means that for the class of lines A that give « the particular value «4, (¥,, 2)
will lie on a certain surface S; (the tube trajectory of §1) and for another value «, of«,
(x, 9, z) will in general lie on another surface S,. We are going to require, however,
that the surfaces S;, S,, . . . are the same geometrical entity S and that when we
assign different particular values to «, we give different laws for the mapping of the
uv-plane on S. This is equivalent to

or to stating that

x=X(U,V), »y=Y(U,V), z=2(UV).

where X, Y, Z are symbols for ordinary functions and U, V are functions of u, v, «.
If we were to choose U and V as independent variables, we should return to the
system of §§ 1 and 2 (apart from the particular equations of motion adopted there)

* “Treatise,” vol. II, chaps. v-viii.
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but we shall assume that U and V are not physically accessible and that, therefore,
we are not free to make this transformation. Let

(.% Z)u = ¢1 (ua o, ‘x)a (za x)a = ¢’2 (ua o, “)7 (xd’)a == ?53 (u9 o, ‘x)a . (90)
then '
0= [[dde = [[ 62 (0 0,0) du do

%2]&M=U%@%@m@, ...... 91)

'
v

0= |[drdy = ([ 6 00, ) duct

are the functional displacements of the p-line which we imagine to move on the
surface S from the position L, to the position L, these lines being the boundaries of
the region of integration in the first column of integrals in (91). The corresponding
integrals on the uv-plane are over the region bounded by the lines A, and A which
fix the epochs at which the p-plane has the positions L, and L respectively in xyz-
space.

The components of velocity are

dp _d(2) gy _d@)  dgy _d(p) g
d () d(uwv)’ d(uw) d(w)’ d(w) d(w)’

which reduce to the Jacobians of §§ 1 and 2 when x, », 2 do not depend on «. At
first, as in (39), the components p;, p,, ps of momentum are assumed to be « times
the corresponding components of velocity but later their definition will not be so
restricted (¢f. ordinary dynamics). We have to propose a suitable form for the
equations of motion, and are guided in this by aiming to conserve as much as possible
of the transformation theory previously discussed. We therefore retain the equations

_ aw _ AW _ AW _ 4w
BEi0y PTier P T awr ™ T T dwr

(93)
where H, the Hamiltonian, is a function of ¢y, ¢, ¢s, p1, P2, p3, While W is the
functional which in the transformation theory plays the part of the characteristic
functional in optics. Accordingly, it is not unnatural to write the equations of

motion in the form
dp, _ _ dH d(yz) _dH

d (uv) d(yz)’ d (uwv)  dp,
Corresponding to (41),

H:i@ﬁ+ﬁ+mﬂ+% ........ (95)

the potential V, being a function of ¢y, ¢,, ¢, is now a functional (function of the line
L) and the forces derived from it are given by functional differentiation. When we

VOL. CCXXXVI—A 2B
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consider (94) in detail, we find the system has great generality. Suppose, for
example, that V = 0, then

i _ g o o, s _y,

dw) >  dw) =’ d(w)

Consequently, A
b= Kf;. (ua 7)), b2 = KJF2 (u: 71), bs = Kf;& (u’ Z)),
where f3, 3, f3, are arbitrary functions. It follows that

¢ = H Sfi (w,0)dudv,etc. . . . . ... (96)

On account of the arbitrary nature of f1, f, f3, the equations of motion in the co-
ordinates used are not adequate to determine the surface on which the p-line moves.
The case V = 0 in this system includes all the possibilities of § 2. On the other
hand, we may regard f, f;, f5 as analogous to the constants of integration which
appear in ordinary differential equations, so that these functions would be no longer
arbitrary in a given case but would be data of the problem. The equations (96)
then determine (, z), (2, ), and (x, y) as functions of  and .

We shall mention only two other forms of V. In the first place when V is
quadratic in the ¢’s, these coordinates are periodic in «, and the motion corresponds
to free vibration. (In optics we have to deal with the forced vibration and this
would require the forces to be periodic in «.) In the second place, if V is the line-
integral round the line L

V= |Adv+Ady+ A, dz, -withdivA =0,
Y

then

— A A OB e (97)

d (uv) ay 0z

the form of which brings to mind MAXWELL’s equations. Suppose that the vector A
represents the magnetic field, and that therefore the derivatives of py, p,, ps;, with
respect to the uy-plane are equal respectively to the three components of the electric
current density X 4=, then (97) expresses the well-known electromagnetic law, but
what is more striking is that the constancy of the Hamiltonian H expresses the law
of conservation of current. This is shown as follows. Let (i, j, k) represent the
total current density, then

. _dgq . dg, dgs 1 dp dps dps
'd (ulv) +‘]d (uv) T kd (wv) — 4nx (1)1 d(ulv) Ty (uv) + s d (uv)>

Hence, integrating

o (012 + o + po?

Y 4n ([idy e + jazdx + k dxay
L,

z_HAxdx+Aydy+Aza’z (98)

L
L,
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The limits of integration of the double integral over the surface S are the lines L,
and L. This possibility of connecting the functional forces (97) with electric current
should be compared with the system (43)—(49), but it should hardly be necessary
to add that the system (97) has been considered only to illustrate the possibilities of
the method.

The above formulation of functional dynamics is put forward tentatively, for it
still remains to be seen that all the difficulties of notation have been removed. There
is at least one attractive possibility. In I (p. 21) the generalization of the Poisson
brackets appropriate to the system of § 2 was introduced, but on account of the fact
that these new brackets involve three variables, it is difficult to understand how they
could possibly be used as the basis of a quantum algebra (of electromagnetism con-
nected with the atomicity of electric charge). On the other hand, with the system
here proposed, using functional variables, this problem would be removed and the
uncertainty relations obtained in I (p. 26) could be expressed by means of brackets
involving only two variables, and therefore suitable for the definition of the algebralc
operation of multiplication.

With a view to physical understanding of the independent functional variable, it
is desirable to remove the vagueness inherent in the above formalism by referring
once again to the ideas which prompted the whole investigation.

For simplicity of discussion, consider the motion of a line in space of 3 dimensions
only and imagine that one is given a certain form H of the line Hamiltonian function,
say (41). The corresponding extended HAMILTON-JACOBI equation is

[JZ(—}%]“LL%JJF [dd<w>] v *d(uv) =0 .. .09

a solution of which has the form
W::ﬂXdydz—f—dedx—l—de@), ...... (100)

where we must have div (X, Y, Z) = 0 if W is to be single-valued. (We have left
out the part of W depending on dudv.) The specification of X, Y, Z at each point
of space corresponds to an electrostatic field throughout space. Another solution
yields another possible electrostatic field related to the same function H. The
fundamental hypothesis is advanced in I that the transformation from the former
field to the latter corresponds to a possible physical process, and that the structure
of the system of possible transformations (and therefore of fields) should be governed
by the magnitude ¢, the electronic charge, in accordance with certain rules analogous
to those of quantum mechanics in which 4 (PLANCK’s constant) appears.

282
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An electrostatic field corresponding to the Hamiltonian function

H = Pyzz + . + ﬁxyz

is one in which the electropotential surfaces of WHITTAKER are minimal surfaces.
Since, on identifying E, with p,., etc., we get

E. (5, 2) + E, (2, %) + E, (v, ) = constant,

ﬁw—)HEx dydz + B, dzdx - E, dx dy = constant, . . . (101)
the property secured by our equations of motion (41) for the moving line on an
equipotential surface is that the surface charge embraced between two curves on the
surface is in constant ratio to the area of the ur-plane between the two corresponding
epochs. It may be said that the line motion in the present instance dramatizes the
-measurement of the flux of electric induction over an equipotential surface. An
electrical transformation in the sense of the last paragraph corresponds to the intro-
duction or creation of charge somewhere in the system.

In attempting to form a physical idea of the process which has been referred to
above as a dramatization of the measurement of charge, one is brought face to face
with the question ‘ what is the physical significance of ¥ and » ? > and this we shall
now try to answer.

In the motion of a closed circuit, the trajectory in 3-space is the surface made up
by successive positions of the line where the circuit is at successive instants. If we
wish to have a picture which conforms to the special theory of relativity, we construct
in 4-dimensional space the 2-dimensional manifold S made up of the successive
spatial lines lying in the series of hyperplanes which corresponds to the elapse of time ;
the intrinsic geometrical form of S is unaffected by rotation of the axes of coordinates.
Viewed from another set of axes (x', »’, 2/, t'), the surface S can be regarded as the
motion of a circuit whose successive appearances are sections of S by hyperplanes
perpendicular to the ¢ axis. This second series of curves on S is on the same level of
physical importance as the first and indeed as any other series obtained by change
of the time axis through a Lorentz transformation. But whereas to the first observer
each member of his own system of sections of S corresponds to a value of the variable t,
to the same observer any section of S appropriate to the time axis of another observer
will correspond in general to an equation between the variables x, », z, t. For example,
in the case of the Lorentz transformation

=B (x — vt), ) =, 2=z v=p <t o %)’

or

let the curve C be the intersection of S with ¢ = a, where a is a constant. The curve
C is not a spatial curve for the first observer (system xyzt), nevertheless, it would have
perfect sense for this observer to refer to C as the * position of the moving line at the
time a =3 (f — vx/c?)”. Instead of giving a value to the variable representing the
time in his own system of coordinates, he would have given the equation connecting
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two variables equivalent to assigning a value to the time of some other frame of
reference.

Now let us consider the tube S as the locus of a point whose coordinates x, y, z, ¢
are functions of two parameters #, v. The curve C is that line on S for which, say,
S (u,2) = 0. Such a relation between u and v corresponds to a value of the time in
some system of coordinates (provided, of course, that C is a time-like section). What
we have previously called the epoch, namely, a particular relation between « and v, such
as f (u, v) = 0, has in fact, to correspond to the time in some system of coordinates.

Let G, and G, be two curves on S corresponding to the epochs »; and A, specified
by f1 (4, v) = 0 and f; (4, v) = O respectively, which in turn correspond to the times
¢, and £, in two different systems of coordinates. If the parameters z and v are

normalized so that ” du dv integrated over the uv-plane between the curves 2; and

A, is equal to the area of the tube S between the curves C; and C, in general, ” du dv

is invariant with respect to Lorentz transformations and is a measure of the separation
of 2; and 2, (¢f. § 1), which corresponds to proper time in the motion of a particle.
The time at a particular instant in any system of coordinates, at least of the Lorentz
group, will be represented by a curve on the uv-plane. Thus, the order of times
belonging to different systems of reference is a functional one, and what we are doing
when we regard time in this way is to look on the substitution of a particular value
for the time in one system of reference not as the mere naming of a particular instant
but as one of the class of equations which are equivalent, on suitable Lorentz trans-
formation, to naming a particular instant in some possible system of reference.

It is evident that if ” du dv is invariant with respect to Lorentz transformation it

cannot be used to measure time intervals in any one frame, for the latter are not
Lorentz invariant.

Now it is the essence of the measurement of time that we compare the process to
be dated with some standard process usually periodic which is taken as a clock, and
in the case of the moving line it is likewise necessary to select one type of motion as
standard and to refer other motions to this one. Electrically this corresponds to the
measurement of electric charge by comparing fields with a standard field. Suppose,
then, that we wish to describe the motion of line B using that of A as standard. We
have to set up a one-to-one correspondence between the positions of B and the
positions of A. One physical way of making this correspondence is to make the
position of A and B belong to the same 3-space, that is, to the same time for one
observer O. If A, is the position of A for time t, of the observer O, and B, is the curve
occupied by Bin the space of the observer O for the same time ¢,, then B, corresponds
to A;. By making O variable we can complete the correspondence. We choose
u and v as a pair of independent variables to describe the motion of B such that

f Ja’u dv gives the proper area of the tube S, described by the motion of A between

the epochs in question.
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We have now to consider how two observers who do not employ the same motion
A as standard are to compare observations, and, indeed, to investigate the general
question of transformation of the functional coordinates. Let us first study the
analogue of Newtonian Relativity, and for simplicity confine our attention to motion
ofa line on a plane. An observer O uses coordinates y, z, to specify position on the
plane, and the pair of independent variables u, v, when dealing with the motion of a
line on the plane. A particular case of the motion of a line on the yz-plane is
mathematically equivalent to giving a law for mapping the uo-plane on the yz-plane,
9 (1, 2)
9 (v, v)
coordinates 'z’ and the same independent variables (x v) and that at a particular
epoch 2, the line L" (arbitrary) of y’z’ coincides with the line L of 2. When 2 is
deformed in the neighbourhood of (u,, v,) L’ differs from L in the neighbourhood of
(»'1, 2'1) and (94, 2;) which are coincident. That is, the line L” is moving relatively

. .. . .0 (y, 7
to the yz plane. The relative velocity in the sense of § 1 of this paper is a—(();—’—f\—) = w,
> Y7
which must be constant over the »’z plane in order that it should refer to a relation-
ship between the two systems of reference (»'z’) and (pz). (Otherwise it will be
necessary to introduce some kind of tensor to express the relation of general relativity.)
In general, then, when the observers O and O’ use the same independent variables

u, v the velocities of any line motion will be connected by the equation

being specified at each point (u, v). Now suppose the observer O uses the

0(0,2) _2(»
2L _aé;j))—(—w. . (102

The analogue of Einsteinian (special) relativity must be based on the hypothesis
that when the y’z’-plane is moving in the above sense with respect to the yz-plane,
O and O’ do not have the same standard of reference for epoch. We now have to
assign to O the new pair of independent variables #'v’, and to discover equations
of transformation from ( yz) and (uv) to (»'z’) and («'v’) involving w. From equation
(102) in the analogue of Newtonian Relativity

j.J-d)’/dZ':dedZ*l—deudv. R ¢ (0%))

If we proceed in strict analogy with the special theory of relativity it is necessary
to postulate some velocity which is invariant with respect to transformation of the
functional coordinates corresponding to * uniform translation ” of the »'z’-plane
with respect to the yz-plane. In § 3 of this paper we have discussed a possible process
of just the type required, and it seems not unnatural to assume that under the con-
ditions we are considering the invariant velocity has the constant value a. Writing

2 (1 @\ 104
v < e T T
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we have
ﬁd)"u’z' =y ﬂdydz + wy Hdudv

Udu’dv’ — j j dudv + j j@ dz, .o (105)

while the expression
a® (dudv)® — (dydz)? . . . . . . . . .. (106)

is invariant with respect to transformations (105).
In the case of a line traversing a tube S in the 4-dimensional space the invariant
which corresponds to (106) will be

a? (dudv)® — [(dydz)? + (dzdx)® + (dxdy)? — ¢? (dx df)? — c? (dydt)? — ¢ (dzdt)?]
= a2 (dudv)® — dS?* . (107)

When we identify the electromagnetic field components (at least in the case
E.H = 0) with the momentum at the same point in the motion of a line on an
electropotential surface in the given field, by means of the equations

E, =« (9 2), H, = «c¢ (x, t), ety . . . . . . (108)

the pair of independent variables must be associated with a line motion taken as a
standard of reference which has some electrical significance. In this way the repre-
sentation of the field components by means of the Jacobians is a method which
illustrates that the measurement of an electromagnetic field is essentially the com-
parison of the field to be measured with a given standard field and this is physically
correct. Combining (107) and (108) and extracting the square root, we obtain

adudo A/ 1+ ,2?12;5 (H* —E%), . . ..... (109)

invariant with respect to transformations of the type(105). Of course, it is necessary
to give (105) an electrical interpretation, and this follows at once because

s - (g -l 3G oo o

and therefore if ¥ be the same in both systems

\
\

E/ — (E n (Ex),,> /<1 + E.%_)) ....... (111)

where b is the limiting field «a, (E,), is a uniform field in respect to which the O’
frame differs from that of O. Thus, as might have been expected because BorN in
his first paper avowedly used the special theory of relativity as his guide, we have
arrived at the conception of a limiting electric field together with the principle that
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186 W. H. WATSON

electric fields are not linearly superposable. Further, in (109), we get as the
multiplier of du dv the well-known Lagrangian density adopted by Born in his first
paper to which the form of his later theory reduces when the electric and magnetic
fields are everywhere mutually perpendicular. The method ofanalysis followed in
the present paper is significant in a special way, for it shows how BorN’s theory
is naturally connected with the possibility of the process analogous to light first
postulated in I, and discussed in § 8 here under the name ““ functional waves”.*

Neither of the electromagnetic 6-vectors can be represented immediately by means
of the direction cosines of a 2-dimensional manifold in 4-dimensional space unless
the electric and magnetic vectors are mutually orthogonal. By combining the two
electromagnetic six-vectors linearly according to the proper y-transformation,] one
can, however, construct two new 6-vectors in which the condition of orthogonality
holds, and it is then possible to connect the electric and magnetic vectors of the
original field with the direction cosines of the surfaces belonging to the transformed
field. The equations of transformation and the ensuing calculation can be most
conveniently expressed by combining the electromagnetic field vectors into a bivector
of GiBBs as has been done by BATEMAN, SILBERSTEIN, SCHRODINGER, and others.

Let
P.=E,+H,etc, G=E.H F=5%(E—H?. .. (112)

The transformed bivector is given by
E, -+ H, =P, =P, where tan 2¢ = G/F. . . . (113)

Now let us introduce the electropotential surfaces of the field E'H’ ; the direction
cosines are proportional to the field components and we can write

(92 E, ds 2 (x, 1) H, ds

5(,0) VEE-_HB dw)’  9(wo) JVE®_H*d(w)’

(114)

where

T = V0D + B (50) = (10— (5,0* = & (2,007, (115)

dS being an element of area of the surface in question.

* It should be noted that functional waves enter the theory in two quite distinct ways ; first as the
analogue of light in its role as the conventional means of connecting events in different frames of
reference, and as the process whose velocity is invariant for linear transformations of the space and
time coordinates ; secondly, as the analogue of de Broglie waves which are intimately connected
with the transformation theory of dynamics and are not propagated with invariant velocity. In the
former role of functional waves we are concerned with the correlation of different electrical frames of
reference, in the latter with the transformation theory of electromagnetic fields and ultimately the
existence of atoms of electric charge.

+ This term was introduced by ScHRODINGER, ‘¢ Proc. Roy. Soc.,” A, vol. 150, p. 465 (1935). Se¢
also WaTson, ¢ Phys. Rev.,” vol. 48, p. 776 (1935).
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On account of (114) we have

B, 4 H, . dS _ P, S g
\//Elz - le d (u()) \ sz + Py2 + Pzz d (uv) )

(.y) Z) + (x: t) -

dsS
Ifd (uv)
surface, then we can treat the bivector
[, 2) +w(xt), (%) +ic(t), (%) +i(z)]

as the velocity vector and P as the corresponding momentum bivector with the
Hamiltonian function

= m is constant during the motion of the line on the electropotential

H=my/PEF P L PE=m(]+iK) . ..... (117)
where -
J:\/Z(F2 + G2)t cos ¢ :\/(F2+G2)%+F

K=V2F2+Gising =+/(F* + G —F. . ... (118
The equations (116) are equivalent to the two systems '

2 2]

(I) (y,z)xm—a—%, (% 1) = —mor, (119)
and
_ K 3K
ID) (1, 2) = mem s CwmO=mam L (120)

In this way the two distinct representations of the field used in I (p. 25) are combined
into a single system and it appears possible that a single complex functional could
be employed in the transformation theory of that paper.

On Lorentz transformation with velocity v parallel to x, P and J# are transformed
according to the equations

P.=P ,P,—8(P,+%P), P.—p(P.—%pP),w =% (121
J y c z ‘ ¢ J

consequently we cannot treat the set (P,, P,, P,, ) as a complex four-vector. They
may, however, be combined in a biquaternion, thus

p=J+iK+Pa+Pb+Pec=J+iK+P . .... (122

a>=b*=c*=—1,ab=c,ca=bbc=a. . . . .. (123)

where

This particular biquaternion is a ‘“ nullifier,” for Tp = 0. The use of quaternionic
forms of representation in the special theory of relativity is not new. JoHNSTON*
and LarMORT pointed out the appropriate character of a linear associative algebra

* ¢ Proc. Roy. Soc.,” A, vol. 96, p. 331 (1919).
t Ibid., vol. 96, p. 334 (1919).

VOL. CCXXXVI.—A 2 ¢


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

188 W. H. WATSON

based on CLiFFORD’s ideas for the representations of electromagnetic relations, while
SILBERSTEIN, in his “ Theory of Relativity ”°, has treated special relativity throughout
in quaternion notation, which on account of its algebra must eventually be preferred
to the Minkowski calculus. Before the advent of Born’s theory, however, it can
hardly be said that biquaternions were necessary, for all the essential representation
was made by bivectors, and it was certainly not recognized that the scalar part of the
biquaternion would have to be connected with a natural unit for the measurement
of electromagnetic fields. Before treating the general electromagnetic field, let us
introduce the biquaternion whose bivector part is

V=—1 [()’9 z) + i (x> t)’ (Zr x) + i ()’: £, (.X',))) + (Za H1,

where the Jacobians represent the component velocities of a moving line. It seems
natural to combine with this bivector, the scalar a of (104), the invariant velocity of
the functional waves analogous to light. We have, therefore, the biquaternion

a-+ V.

If we multiply this by « and use (108) we create in the case E . H = 0, the biquater-
nion, ¢, = b + H — {E whose norm is T¢, = Vb2 —2F.
For the general field where E . H # 0, let

g=2x+1up+H-—E
Suppose that we require that Tg shall be real. Then since

T¢? = g Kg = 2 — 2 4 2ixy — 2F — 2iG,
we must have
xy = G.
Hence

Tq = v/ 2% — 2F — G?/x2,

or, putting ¥ = b of BorN’s theory,

bTg= bt —20°F — G2 (= /(0% — J?) (6* + K?)),
which is BorN’s Lagrangian ; ¢ is then
g=10+41:G/b +H — iE.

If we operate on ¢ with the biscalar (62 — iG)/Tq so as to make a new biquaternion
whose scalar is real we obtain
=G bGP

where B and D make the other pair of field vectors required in Born’s theory.*

+ B —1D

* The meanings of B and H must be interchanged for comparison with Bor~’s equations.
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The relations which have just been pointed out serve in themselves as sufficient
evidence of the appropriateness of biquaternions relative to BorN’s theory. Other
aspects of the use of this notation, which is particularly suggestive, have been
discussed in detail elsewhere.*

Let us return to what may be called the relativity form of the Hamiltonian function
for the motion of a line corresponding to the general electromagnetic field. We are

. s
at liberty to choose the value of 7 (@)
aS ]
d(wuw) M

in (116). Let us assume

K

or N

where M is a function of J only, and N of K only, and M and N are possible
Hamiltonians. We have, therefore,

_ M 8N
(,))3 Z) - ‘a"E; , €tc., or (,ya Z) = 51_—1; , etc.

The result of the calculation is M? = 4 J2 - const., which suggests that what we
must choose are

M=+ _—J]P=+vVb —F — JF + G2,

and

N =+ K2 =+b2—F + /T I G

In the case of mutually perpendicular electric and magnetic fields these give

M, =2+ H: — E?, N, =b.

This value M, of M agrees with our former value of the Hamiltonian expected by
analogy with the special theory of relativity, whereas the value N; of N requires that
the velocity of the moving line with this Hamiltonian is zero (all Jacobians of the
type (9, ¢) vanish). The representation of the field by means of its magnetopotential
surfaces is achieved only if the correspondence of E and H with the components of
line velocity in M, is inverted.

CONCLUSION

The ideas outlined in the last section appear adequate to connect BorN’s theory
of a limiting electric field strength and of a non-linear law of composition of fields
with the conception of functional waves as the physical process which in its dual
role is analogous on the one hand to light and on the other hand to the de Broglie
waves of so-called material particles. It is evident that once one accepts a non-linear
law of composition of fields one has to give up the MAXWELL-LORENTZ method of
describing a field in vacuum by means of only two vectors. The consequences of

* ¢« Trans. Roy. Soc. Can.,” vol. 30, Sect. III, pp. 105-113 (1936).
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190 ON A SYSTEM OF FUNCTIONAL DYNAMICS AND OPTICS

this have not been worked out by the present writer, but it seems proper to point out
that BorN’s electromagnetic equations are of the form (12) of § 1, so that it is still
possible to regard any given electromagnetic field as derived by functional differentia-
tion from a solution of an extended HaMILTON-JACOBI equation (actually a pair of
such equations would be necessary if twelve independent quantities, the components
of four vectors, were necessary to describe the field). Thus, one can combine a trans-
formation theory of electromagnetic fields with a theory of the same type as BorN’s.
One must retain the idea that the field vectors can be represented by functional
derivatives as in I, but one is allowed a fairly wide choice of form for the Hamiltonian
function to determine the actual functional derivative equation which plays the part
analogous to that of the wave equation in quantum mechanics. The restriction
imposed by Born’s theory on the form of Hamiltonian function is, roughly speaking,
analogous to the restriction required by special relativity in the dynamics of a particle.

SUMMARY

This is an extended and more detailed study of the system, due to VOLTERRa,
discussed by the writer in a previous paper as the mathematical basis of a trans-
formation theory of electromagnetism. The following topics are dealt with : the
functional distance between two closed lines in space : motion of a line regarded
as the motion of a point depending on two independent variables ; definition of
velocity and acceleration by functional differentiation ; minimal surface as analogue
of the straight line : possible physical meaning of force as defined by VOLTERRA’S
equations : system of two lines and analogue of the conservation of momentum :
geometrical optics with 2-dimensional rays corresponding to the dynamical trajec-
tories : definition of phase, wave velocity vector : connexion between loci of equal
phase and the rays in 3-dimensions : transformation theory : question of the com-
plete specification of the wave functional—non-linear relations between linear
functionals : attempt to construct dynamics with the possibility of such non-linear
relations ; functional time ; relativity of functional coordinate systems ; representa-
tion of general electromagnetic field in functional dynamics ; BorN’s hypothesis of
limiting field intensity and the functional analogue of light ; non-linear superposition
of fields ; use of biquaternions.
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